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Abstract

Self-supervised learning (SSL) and the objec-
tive of masking-and-predicting, in particular,
have led to promising SSL performance on a
variety of downstream tasks. However, while
most approaches randomly mask tokens, there
is strong intuition from the field of educa-
tion that deciding what to mask can substan-
tially improve learning outcomes. We intro-
duce DIFFERENCE-MASKING, an approach
that automatically chooses what to mask dur-
ing continued pretraining by considering what
makes an unlabelled target domain different
from the pretraining domain. Empirically,
we find that DIFFERENCE-MASKING outper-
forms baselines on continued pretraining set-
tings across four diverse language and multi-
modal video tasks. The cross-task applicability
of DIFFERENCE-MASKING supports the effec-
tiveness of our framework for SSL pretraining
in language, vision, and other domains.

1 Introduction

Self-supervised learning (SSL) strategies have re-
cently been applied to adapt pretrained models to
specific downstream tasks by continuing to pretrain
models on in-domain unlabelled data from tasks
(Dery et al., 2023; Gururangan et al., 2020). This
continued pretraining setting can be useful to test
different SSL strategies such as masking.

Inspired by the distributional hypothesis in the
language domain (Harris, 1954), masking is an
SSL objective in which a portion of the data is hid-
den and the model attempts to reconstruct the hid-
den portion from the surrounding context. Masking
has enabled breakthrough performance on tasks in
a variety of domains, such as language, vision, and
speech (Devlin et al., 2019; Li et al., 2021; Hsu
et al., 2021; Ericsson et al., 2022), motivating in-
terest in reseearching how masking strategies can
influence representation learning in SSL.

While prior work has studied how the amount
masked influences model learning (He et al., 2022),

Figure 1: DIFFERENCE-MASKING automatically se-
lects what to mask based on what makes the task domain
different from the pretraining domain. In this sample
from a chemistry relation extraction task (ChemProt),
random masking masks more domain-irrelevant words
(left) compared to our DIFFERENCE-MASKING ap-
proach, which masks domain-relevant words (right).

most masking approaches choose which parts of the
data to mask randomly. Although it is understudied
in SSL, deciding what to mask is a critical com-
ponent in human education. Educators designing
“fill-in-the-blank” assessments for students must de-
cide what content to mask in order to effectively
assess student understanding of a domain (Pajares
and Miller, 1997; Bjork and Linn, 2006; Bae and
Lee, 2018). For example, in a real-world “fill-in-
the-blank” chemistry test, a teacher might choose
to mask out domain-specific words (“density”, “sili-
con”) to assess student learning, instead of masking
domain-irrelevant words (“example”, “process”).

We propose DIFFERENCE-MASKING, a novel
approach for automatically selecting what to mask
during continued pretraining for improved perfor-
mance on downstream tasks. Our approach first
identifies “seeds” that describe what is unique or
different about an unlabeled target domain and then
uses these seeds to choose what tokens to mask in
continued pretraining.

In experiments spanning diverse language and
multimodal video tasks (ACL-ARC, ChemProt,
TVQA, Social-IQ), we find that DIFFERENCE-
MASKING outperforms strong baselines, vali-
dating our hypothesis that masking based on

1

ar
X

iv
:s

ub
m

it/
49

12
44

8 
 [

cs
.L

G
] 

 2
3 

M
ay

 2
02

3



Figure 2: DIFFERENCE-MASKING: an approach to masking during continued pretraining that first selects seed
topics relating to the downstream task, then masks tokens based on their similarity to those seed topics.

what is unique about a domain or task pro-
vides stronger representation learning transfer
than the alternative. We provide intuition to ex-
plain the strong performance of DIFFERENCE-
MASKING, along with extensive analyses and abla-
tions to better understand the performance of our
method. Code is available at https://github.
com/abwilf/Difference-Masking.

2 Related Work

Prior masking strategies in NLP have considered
task-specific approaches but have not generalized
these methods to different tasks in continued pre-
training. Prior masking strategies in vision have
been primarily based on signals from the modeling
process and do not consider what makes domains
unique. In this section, we present an overview of
masking strategies in NLP, vision, and SSL.

2.1 Masking in NLP
Masking relies on the distributional hypothesis,
which posits that the meaning of a word can be
inferred from its context (Harris, 1954). Masking
in NLP has functioned as an effective SSL strat-
egy when training models such as BERT (Devlin
et al., 2019) and XL-Net (Yang et al., 2019). While
most prior masking approaches in NLP approaches
have been random masking, some approaches have
considered non-random masking. For example,
Salient Span Masking (SSM) (Guu et al., 2020)
is the closest to our work. This approach uses a

named entity recognition model to mask out named
entities for the task of open-domain QA. Similarly,
Studying Strategically (Ye et al., 2020) learns to
find the answer within the context and mask it
out. However, these approaches are not flexibly
extended beyond open-domain QA, for example to-
wards the chemistry (ChemProt) and citation intent
(ACL-ARC) tasks we include in our experiments
(Kringelum et al., 2016; Jurgens et al., 2018). Our
DIFFERENCE-MASKING approach can be flexibly
applied across different domains and tasks.

Another relevant work, (Arefyev et al., 2021),
uses the weights of a naive-bayes classifier to de-
termine what to mask. However, this setting differs
from ours, in that our setting does not have access
to labels. Finally, AANG (Dery et al., 2023) com-
bines masking strategies such as BERT-style (De-
vlin et al., 2019) and XL-Net-style (Yang et al.,
2019) masking and meta-learns weights for each
of the different strategies. However, this work does
not learn a masking strategy that is non-randomized
and decided by the downstream task.

2.2 Masking in Vision
Prior work in vision has used the attention of the
model during SSL training to determine what to
mask. MST (Li et al., 2021) uses attention maps to
determine “non-essential regions” to mask, while
AttnMask (Kakogeorgiou et al., 2022) does the op-
posite by masking the most attended-to regions.
SemMAE (Li et al., 2022) uses attentions to guide
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the masking process by creating “semantic parts”.
iBot (Zhou et al., 2022) learns an online tokenizer
during SSL which modifies how masks are selected,
and ADIOS (Shi et al., 2022) learns an adversary
which attempts to mask those regions that are most
difficult for the model to predict. Although these
prior approaches learn non-random masking strate-
gies, they do not use domain-specific data to guide
their masking strategy.

2.3 Masking in SSL
Empirical and theoretical studies of SSL have
demonstrated that masking can be seen as an in-
stance of contrastive learning (Tsai et al., 2021; Shi
et al., 2022). Prior work has shown that contrastive
learning has the potential to extract task-relevant in-
formation (Oord et al., 2018; Bachman et al., 2019;
Zhang et al., 2016b) and discard task-irrelevant
information (Tsai et al., 2021), under certain crit-
ical assumptions where the views or modalities
differ only by the task-relevant information (Tian
et al., 2020). Our paper contributes deeper empir-
ical contributions to parallel these SSL studies by
demonstrating how DIFFERENCE-MASKING can
automatically identify task-relevant information to
mask during continued pretraining, in order to im-
prove downstream task performance.

3 DIFFERENCE-MASKING

This section describes the motivation and imple-
mentation of DIFFERENCE-MASKING.

3.1 Notation
We are given a model M which has been pretrained
on large amounts of multi-domain data, drawn
from domain distribution D∗ (e.g., a model such
as RoBERTa pretrained on a large multi-domain
corpus). We are given downstream target task data
drawn from domain distribution DT , but we are
not given task labels y.

We denote DT/∗ as a masking over DT that
conceals the information that makes the domain
DT different from D∗. For example, in a corpus
related to understanding chemistry, DT/∗ would
mask chemistry concepts which are likely to be in
DT and unlikely to be in D∗. We term DT∗ as a
masking over DT that masks concepts likely to be
in both domains. The relationships among these
variables are visualized in Figure 3.

Figure 3: DIFFERENCE-MASKING tests the hypothe-
sis that models pretrained on multi-domain data D∗
and trained through continued pretraining on DT will
perform better on eventual finetuning if the masking
strategy prioritizes information that is unique to DT (in-
formation in DT/∗), than if the masking strategy relies
on randomly-selected masks.

3.2 Motivation
We build on the intuition from (Gururangan et al.,
2020), who study continued pretraining and find
that in-domain data can be beneficial for task-
adaptive pretraining to adapt models to tasks de-
fined on data from specialized domains (e.g. chem-
istry). DIFFERENCE-MASKING is motivated by
the intuition that continued pretraining can benefit
from a task-adaptive masking strategy as well:
a masking strategy that prioritizes tokens that are
more related to the downstream task’s domain than
tokens related to many domains. This assumption
can be expressed through mutual information:

I(DT/∗; y) > I(DT∗; y) (1)

We assume that DT/∗ shares more mutual informa-
tion with the task label than DT∗ does.

3.3 Objective and Approach
The goal of DIFFERENCE-MASKING is to learn
representations during continued pretraining that
capture DT/∗. Most prior works mask tokens
randomly during pretraining, which may choose
masks in DT∗ that are not task-adaptive.

Formally, the objective of DIFFERENCE-
MASKING is to create a function f that masks the
portions of DT that make it unique, recovering
DT/∗, as denoted by the following expression:

max
f

I(f(DT );DT/∗) (2)

In practice, we evaluate our method using the
following objective: minimizing the finetuning loss
after continued pretraining (CPT ) with masking
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strategy f . CPT takes as input the pretrained model
M , unlabelled in-domain data DT , and a masking
function f . CPT trains M on DT using f and
then outputs an updated model. Finetuning (FT )
takes this updated model and task data DFT as
input, finetunes the model, and outputs the loss
LFT . The objective of DIFFERENCE-MASKING is
represented by the following expression:

min
f

LFT(CPT(DT ,M, f), DFT ) (3)

To systematize this intuition, DIFFERENCE-
MASKING proceeds in two steps:

1. Finding Differences: at a high level, we cre-
ate a modified TF-IDF (Jones, 1972) topic
model to determine which words are most
commonly found in the in-domain data that
are not commonly found in other domains.
We term these words seeds, and the group of
seeds is referred to as our diff-set.

2. Masking Based on Differences: we mask
tokens based on their similarity to our diff-set.

3.4 Finding Differences: TF-ICF
To find what makes a domain or task unique, we use
a modified TF-IDF topic model. The standard TF-
IDF determines the ratio of how frequently a word
appears in a document compared to how frequently
the word appears in other documents in a corpus.
In our case, because we are attempting to find
words that make a corpus different from other cor-
pora, the score of a word is highest when it appears
frequently in our corpus (which we term DCPT )
and infrequently in any other corpus (which we
term D∗). We denote our approach as TF-ICF
for term-frequency, inverse-corpus-frequency, ex-
pressed by the following equation:

scoreword =
freq(word, DCPT)

freq(word, D∗)
(4)

Our diff-set is comprised of the top K scoring
words, per TC-ICF scoring.

To effectively capture word frequencies in the
general distribution of the English Language (D∗),
we use unigram counts derived from the Google
Web Trillion Word Corpus (Brants and Franz,
2006; Norvig, 2009).

3.5 Masking Based on Differences
Intuitively, we aim to mask tokens based on how
similar they are to the words in our diff-set. Be-
cause each token in question is a single vector

and the diff-set contains K vectors, it is not im-
mediately clear how to determine a similarity score.
Our intuition is that, for a set of K seeds which
may describe multiple different concepts defining
what makes a domain or task unique, we would
like to mask tokens if they relate closely to any
of those concepts. For this reason, we determine
the token’s similarity based on its similarity to its
nearest-neighbor seed.

Formally, we refer to the word embeddings for
the words in the diff-set as Ediff and the embed-
ding for a given token ti in a sequence of N tokens
is referred to as Eti . The likelihood P (Mti) that a
token ti should be masked is, then, proportional to
the cosine similarity of that token’s embedding and
its nearest-neighbor of the diff-set embeddings:

P (Mti) =
maxk cos(Eti , Ediffk)∑N
j=1maxk cos(Eti , Ediffk)

(5)

where the denominator is a normalization over the
length of the sequence, to ensure that the probabil-
ity distribution sums to 1. We empirically validate
our intuition for the nearest-neighbor strategy as
opposed to a similarity function using an aggregate
vector such as the centroid of the diff-set vectors in
Section 5.3.

4 Experimental Settings

Experiments are performed to allow each model
to learn as long as needed during Continued Pre-
Training, only stopping when validation error in-
creased (aka early-stopping). So all models, includ-
ing the random-masking baseline, have pre-trained
as much as they need to before overfitting. More
experimental details can be found in Appendix D.

4.1 Language Experiments
4.1.1 Datasets and Tasks
We consider the task-adaptive continued pretrain-
ing setting (TAPT) for language tasks as in (Gu-
rurangan et al., 2020), performing auxiliary learn-
ing on a pretrained model. TAPT is a common
SSL setting for two reasons: (1) it represents
a computationally-feasible way to test the effec-
tiveness of self-supervised representation learn-
ing methods, and (2) it is realistic to modern ap-
proaches which rely heavily on pretrained mod-
els (Dery et al., 2023).

We conduct experiments with the ChemProt
task (Kringelum et al., 2016), a relation classifica-
tion task that uses chemistry documents. ChemProt
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is a low-resource classification task with a large
amount of in-domain unlabelled data, making it a
realistic settings in which SSL is helpful in contin-
ued pretraining. The primary metric used in prior
ChemProt work is accuracy.

We also conduct experiments with the ACL-
ARC task (Jurgens et al., 2018), a citation intent
task based on the ACL Anthology Reference Cor-
pus (Bird et al., 2008). We use the same ACL-ARC
dataset as prior works (Gururangan et al., 2020;
Dery et al., 2023).

4.1.2 Modeling
For our experiments, we reproduce the multitask
setting from AANG (Dery et al., 2023) and use a
pretrained RoBERTabase to learn separate classi-
fication heads for each auxiliary objective (in our
case, the auxiliary objectives are the primary fine-
tuning task and the SSL masking task). This is in
slight contrast to the original setting from (Guru-
rangan et al., 2020), which contained a pretraining
followed by finetuning step.

Most masking approaches mask individual to-
kens with a random masking ratio, but we found it
to be more effective to mask tokens grouped by the
word they correspond to, regardless of the subword-
tokenization. Our intuition is that for specialized
domains, such as the domain in the ChemProt con-
text, words such as “phosphates” would be tok-
enized into “phos” and “-phates”, either of which
is easy to predict given the other, but which does
not correspond to learning a general understand-
ing of the specialized domain. We provide further
discussion of this design decision in Appendix A.

4.2 Multimodal Video Experiments
4.2.1 Datasets and Tasks
We consider the same task-adaptive setting for two
multimodal video understanding tasks that have an
emphasis on social interactions. We chose these
tasks because of the intuition in Gururangan et al.
(2020) that TAPT will be most effective when task
data is a narrowly-defined subset of the broader
domain. Since pretrained multimodal models such
as MERLOT (Zellers et al., 2022) are trained on
a broad domain of 20 million videos that do not
all contain social interactions, we hypothesize that
these two tasks will serve as effective benchmarks
for understanding DIFFERENCE-MASKING’s capa-
bilities as a task-adaptive masking strategy.

TVQA TVQA (Lei et al., 2018) is a dataset con-
taining 21,792 videos from 6 American television
shows and questions and answers related to the
videos. Each question is paired with 5 answer
choices, one correct and 4 incorrect, and corre-
sponding video, audio, and subtitles.

Social-IQ Social-IQ (Zadeh et al., 2019) is a
dataset containing 1250 videos of social situations
and questions and answers pertaining to the videos.
Each question has corresponding video, audio, and
subtitles. Each question has 3 incorrect and 4 cor-
rect answers, resulting in 12 samples for each ques-
tion (with 1 correct option and 3 incorrect options
for each sample).

4.2.2 Modeling
The TAPT experiments were conducted using the
MERLOT-Reserve (base) model (Zellers et al.,
2022). MERLOT-Reserve is a large multimodal
transformer pretrained on YT-Temporal-1B, a
dataset of 20 million Youtube videos. MERLOT-
Reserve learns multimodal representations of
videos, given audio, subtitle text, and video frames
by masking and predicting segments of either au-
dio or text given the corresponding video frames.
We reproduce MERLOT-Reserve’s original train-
ing on TVQA: we decompose samples in Social-
IQ and TVQA from the form (Question, All An-
swers, Video Information) into a list of 3-tuples:
(Question, Candidate Answer, Video Information).
MERLOT scores each candidate answer indepen-
dently, given the question and video, and is trained
with loss that encourages the model to minimize
estimated likelihood of incorrect answers and max-
imize likelihood of correct answers. MERLOT’s
training hyperparameters are in Appendices B.4
and D.1.2 of their paper (Zellers et al., 2022).

From video frames, we mask image patches
into 16x16 patches as determined by MERLOT-
Reserve’s backbone image transformer ViT (Doso-
vitskiy et al., 2021). Similar to our language task,
where we mask tokens corresponding to the same
word, we found that SSL training improved when
we masked image patches semantically-grouped
together based on object type. Details about this
experimental design decision are in Appendix B.

4.3 Baselines
Random Masking Most masking approaches
choose tokens to mask with uniform random proba-
bility. Formally, the likelihood P (Mti) that a token
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Language Multimodal
ACL-ARC ChemProt TVQA Social-IQ

(1) Random Masking 66.30 82.82 73.75 69.05
(2) AttnMask 65.57 82.11 81.57 69.61
(3) Selective Masking* 69.06 82.94 - -
(4) EntityBERT* - 82.04 - -
(5) DIFFERENCE-MASKING 74.04 83.94 81.73 71.37

Table 1: We find that DIFFERENCE-MASKING outperforms both the widely-used Random Masking approach and
AttnMask approach in both the language and multimodal experimental settings. DIFFERENCE-MASKING also
outperforms the Selective Masking* and EntityBERT* baselines in language domain. (*) We note that Selective
Masking and Entity Masking baselines are only designed for language, and EntityBERT can only be implemented
with a domain-specific pretrained model. In this case, we use BioBERT to select entities in ChemProt.

ti in a sequence of length N will be masked is

P (Mti) =
1

N
(6)

AttnMask AttnMask (Kakogeorgiou et al., 2022)
is a domain-agnostic approach in which the likeli-
hood of masking a given token is proportional to
how attended-to that token is by the [CLS] token,
averaged across the different heads of the trans-
former. Formally, we define a function fatt which
takes in model M , sequence of tokens t, and target
token index i and outputs how attended-to token ti
is. The probability that token ti will be masked is

P (Mti) ∝ fatt(M, t, i) (7)

Selective Masking Selective masking (Gu et al.,
2020) chooses tokens to mask based on whether
adding each token will improve downstream task
accuracy. Notably, this approach uses downstream
task labels to guide the choice of mask in continued
pretraining, whereas DIFFERENCE-MASKING is
entirely self-supervised. The probability that token
ti will be masked in Selective Masking is propor-
tional to the difference between the downstream
task performance when using the full sequence t[:]
versus using only the sequence up to and including
the token ti. We utilize the same corpus for both
DD and DT to ensure a fair comparison with our
proposed approach in the TAPT setting, and report
results on the Language experiments because the
method has not been tested yet for different vision
tokenization strategies.

P (Mti) ∝ P (y | t[:])− P (y | t[:i]) (8)

EntityBERT EntityBERT (Lin et al., 2021)
presents an approach to masking tokens based
on whether they are part of “entities”, as defined

by a domain-specific entity-tagger. The original
paper, tested on the clinical domain, continually
pretrains the PubMedBERT model. However, be-
cause the ChemProt domain is different, we im-
plement this baseline by using the BioBERT (Lee
et al., 2019) model that more closely aligns with
our downstream task. To identify the entities,
we use the BioBERT model fine-tuned in NER
task with BC5CDR-chemicals (Li et al., 2016) and
BC4CHEMD (Krallinger et al., 2015) corpus. We
report results for the EntityBERT approach on the
ChemProt task, only, because EntityBERT can only
be implemented with a domain-specific pretrained
model. It is infeasible to reproduce domain-specific
tagging for ACL-ARC domains without unfairly
representing the method. The probability that a
token ti is masked is related to whether it is part of
a recognized entity or not.

5 Results and Analysis

We find that DIFFERENCE-MASKING outperforms
both the Random Masking and AttnMask baselines
in both the language and multimodal TAPT settings.
Moreover, our approach outperforms our other two
baselines (Selective Masking and Entity Masking)
specifically in language domain. The results are
presented in Table 1. We investigate three ques-
tions to analyze the performance of DIFFERENCE-
MASKING:

1. Why does DIFFERENCE-MASKING outper-
form the baselines? How does the choice of
what is masked impact downstream task per-
formance? (Section 5.1 and 5.2)

2. How does our choice of nearest-neighbor ap-
proach in DIFFERENCE-MASKING impact
performance? (Section 5.3)
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3. Why does DIFFERENCE-MASKING perform
better relative to baselines on some tasks than
on others? (Section 5.4)

5.1 What is masked?
We investigate why our method outperforms the
baselines by looking at which words are masked
during DIFFERENCE-MASKING. We focus this
section’s analysis on our language tasks and further
analyze our video tasks in Section 5.4.

Surprisingly, in the ChemProt task we find
that some of the words selected for masking by
DIFFERENCE-MASKING are the same words as
the labels for the downstream task. ChemProt is a
relation extraction task, where labels include “in-
hibitor”, “antagonist”, and “activation”. As shown
in Figure 4(a), the word most often masked by
DIFFERENCE-MASKING is “activity”, followed by
“inhibited”, “inhibitor”, and, some words later, “an-
tagonist”. We find that DIFFERENCE-MASKING’s
automatic process for finding seeds in unlabelled
domain data is reconstructing the labels of the
downstream task without using any label informa-
tion. This highly-promising phenomena suggests
that DIFFERENCE-MASKING is capable of mask-
ing in such a way that the task performed during
SSL is similar to the downstream task.

We find that the most frequently masked words
in the ACL-ARC task had an interesting grounding
in human intuition as well: the most frequently
masked words closely-aligned with the ACL paper
submission tracks describing the high-level top-
ics for papers. For example, some of the most
frequently masked words were “learning”, “infor-
mation”, “translation”, “semantic”, and “lexical”.
These words closely correspond to the ACL sub-
mission tracks “Machine Learning for NLP”, “In-
formation Extraction”, “Machine Translation”, and
“Semantics: Lexical”. A full visualization of the
most frequently masked words is presented in Fig-
ure 4(b). Since submission tracks for ACL can be
seen as a set of topics that span the space of ACL
papers, this provides further evidence for our hy-
pothesis that masked words will align closely with
what makes each domain unique.

5.2 Why does DIFFERENCE-MASKING
outperform baselines on language tasks?

We hypothesize that our approach outperforms the
Selective Masking and EntityBERT approaches be-
cause both have limitations that restrict their abil-

ity to generalize to our downstream task domains.
In the original work, Selective Masking uses in-
domain data DD that is three orders of magnitude
larger than the task data DT . However, in our TAPT
setting we only have access to the lower-resource
unlabelled data from DT . Our experiments suggest
that Selective Masking fails to generalize well to a
smaller continued pretraining dataset.

Similarly, the EntityBERT masking strategy was
also trained on a much larger dataset (4.6M sen-
tences as opposed to 5k), and struggles to gen-
eralize to a different domain. The EntityBERT
approach uses a domain-specific model for tagging
which, while well suited to the original clinical
domain, does not seem to generalize well to the
academic chemistry domain. In initial experiments,
we found that the EntityBERT approach with the
original model performed slightly worse than the
Random Masking baseline. We implemented these
experiments using BioBERT for tagging, a model
which is specifically designed for scientific biomed-
ical texts, but it still did not perform as well as
DIFFERENCE-MASKING.

Although these masking strategies work well
in their original settings, they have difficulty gen-
eralizing to the challenging TAPT setting across
domains. This is a strength of our method, which is
able to use a relatively small continued pretraining
dataset and is domain-agnostic. We analyze the
differences between the other baselines: Random
and Attn-Mask, and DIFFERENCE-MASKING in
detail in section 5.4 below.

5.3 How does the nearest-neighbor seed
selection contribute to performance?

We hypothesize that, by selecting the nearest-
neighbor seed to each token, our algorithm be-
comes robust to poor seed selections made by the
TF-ICF algorithm described in Section 3.5.

We validate this hypothesis by comparing TF-
ICF seed word rankings to the seeds that were most
commonly “chosen” (the closest to a word that was
masked). For example, the word “charniak” was
ranked first in the TF-ICF scores, which led to its
selection as a seed word. “Charniak” is a highly-
specific concept that is not the type of seed we
would expect would perform well at articulating
the unique aspects of the space of ACL papers.
However, relatively few words that were masked
were closest to “charniak” as a seed, making it only
the 11/20th most “chosen” seed. Figure 5 depicts
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(a) ChemProt (b) ACL-ARC

Figure 4: The most frequently masked words chosen by the DIFFERENCE-MASKING algorithm across the ChemProt
and ACL-ARC tasks. We find that for the ChemProt dataset, the masks we find automatically through unlabelled
data partially recover the end task labels.

Figure 5: For the ACL-ARC task, we display how often
each chosen seed word was the word which caused a
token to be masked during training, by virtue of being
the most similar seed to the given token.

the most masked words for the ACL-ARC task.
Their ordering aligns well with the uniqueness of
the ACL-ARC task space, qualitatively supporting
our hypothesis that nearest-neighbor reduces the
effect of poor seed selection.

We further investigate this hypothesis by eval-
uating a different strategy for token-scoring: the
centroid. Instead of scoring a token based on its
similarity with the most similar seed, we score
each token based on its similarity with the centroid
of the seed word embeddings. While poor seed
choices would directly affect the centroid through
the mean operation, they may affect the nearest-
neighbor strategy less because the poor seed may
not be chosen as the closest seed for masking. We
re-conducted our TAPT experiments with this cen-
troid strategy and report our results in Table 2. We

find that the nearest-neighbor strategy does, in fact,
outperform the centroid strategy, especially on the
ACL-ARC task, further validating our hypothesis.

ACL-ARC ChemProt

Centroid 69.02 83.66
Nearest-Neighbor 74.04 83.94

Table 2: Ablating DIFFERENCE-MASKING’s seed-
scoring function based on nearest-neighbor and re-
placing it with one based on similarity with the seed
embeddings’ centroids leads to a performance degra-
dation. This provides evidence for our hypothesis
that the nearest-neighbor scoring function helps make
DIFFERENCE-MASKING robust to poor seed selections.

This result leads us to hypothesize that some of
the effectiveness of the nearest neighbor strategy
is due to the variance of the cluster of seed embed-
dings. With a very low variance, we would expect
that the space spanned by embeddings would be too
restrictive, because tokens would be masked very
similarly. We investigate this hypothesis by evalu-
ating DIFFERENCE-MASKING across four values
of K, ranging from 5 to 20 in increments of 5.
We find that, for both tasks, the variance of seed
embeddings correlates strongly with the results.
Results are shown in Table 3. Because we see
clear correlation values, we hypothesize that future
work may find it fruitful to consider optimizing
DIFFERENCE-MASKING’s seed selection further,
based on whether individual datasets benefit from
higher or lower variance seed clusters.
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ACL-ARC ChemProt

-0.9576 0.8463

Table 3: We find high Pearson’s Correlation Coefficient
results between the variance of the seed embeddings
and the performance of the model.

5.4 Why does DIFFERENCE-MASKING
perform better relative to baselines on
Social-IQ than on TVQA?

We were particularly curious why, in the TAPT
settings, DIFFERENCE-MASKING outperformed
baselines by a larger margin on Social-IQ than on
TVQA. We hypothesize that this result suggests
that the information contained in the visual repre-
sentations of people is less relevant to TVQA than
to Social-IQ.

Qualitatively, we test this hypothesis by analyz-
ing both the Social-IQ and TVQA questions and
answers. We find that 55.6% of the TVQA ques-
tions begin with “what”, and that many of these
questions correspond to abstract concepts or ob-
jects, instead of people. For example, “What was
on the back of the pills when the patient asked for
cough pills?” is a TVQA question that does not
relate to visual representations of people. As (Lei
et al., 2018) mention, other questions are designed
to rely on multiple modalities to infer answers. For
example the question “What was Castle right about
when Beckett is speaking?” relies on the visual
modality to localize when Beckett is speaking, and
the rest of the inference relies on text. These types
of questions could make continued pretraining on
the visual domain, alone, less relevant.

In contrast to TVQA, all questions in Social-IQ
are focused on understanding social interaction;
therefore, we posit that masking out visual repre-
sentations of people (faces and bodies) should be
beneficial for learning this downstream task, even if
the questions rely on multimodal data. For example,
some questions in Social-IQ include “What is the
man in the black T shirt shirt thinking?” and “What
is the overall tone of the conversation?” These are
examples of questions in which a more nuanced
understanding of the visual modality would prove
helpful to the Social-IQ task performance.

Empirically, we validate this hypothesis by ana-
lyzing how often DIFFERENCE-MASKING masks
tokens from within person bounding boxes for each
of the tasks. If our hypothesis that visual represen-

tations of people are less important to TVQA than
to Social-IQ holds, then we would expect our algo-
rithm to mask fewer tokens from person bounding
boxes in TVQA videos than in Social-IQ videos.

Method TVQA Social-IQ

Random .17 .15
AttnMask .38 .19

DIFFERENCE-MASKING .40 .90

Table 4: For each method, we analyze how often tokens
are chosen to be masked from within bounding boxes
over people as opposed to objects.

In Table 4, we confirm this expectation. We find
that the best setting of DIFFERENCE-MASKING

masks substantially fewer visual tokens correspond-
ing to people than to other objects in TVQA (.40)
as opposed to Social-IQ (.90). In Social-IQ, where
the performance difference over the closest base-
line is more pronounced (1.76%), the best setting of
DIFFERENCE-MASKING draws 90% of its masked
visual tokens from representations of people.

6 Conclusion

In this paper we introduce DIFFERENCE-
MASKING, a method for identifying what makes a
corpus unique and using this information to guide
a strategy that chooses what to mask during SSL
continued pretraining. We find that our method
outperforms strong baselines across diverse lan-
guage and multimodal video understanding tasks.
We provide a detailed discussion of what is masked
in DIFFERENCE-MASKING and why our method
performs well on various tasks. The cross-task
applicability of DIFFERENCE-MASKING supports
the effectiveness of our framework for SSL
pretraining in language, vision, and other domains.

7 Limitations

As described in Section 3, DIFFERENCE-
MASKING is based on the intuition that it is more
beneficial to mask based on what is unique (DT/∗)
about a downstream task’s domain. However,
it is challenging to find what makes a domain
unique; therefore, our method is an approxima-
tion of DT/∗. We believe future work may find it
fruitful to investigate additional methods for ap-
proximating DT/∗. In Section 5, we provided
intuition, empirical results, and analysis to un-
derstand why our method outperformed attention
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masking baselines by a larger margin on Social-IQ
than on TVQA. A broader investigation of why
DIFFERENCE-MASKING during pretraining is ben-
eficial by a larger margin to some downstream tasks
would be helpful to the community and represents
a fruitful research direction.

8 Ethics Statement

We believe strongly that self-supervised learning
is a promising direction for the machine learning
community. This does not discount, in any way, the
salient arguments made about the social and enviro-
mental risks of large models (Bender et al., 2021;
Strubell et al., 2019). We believe that works such
as ours, which study SSL in a resource-constrained
context, both increase access to those with lim-
ited compute resources and conform to a more
environmentally-sustainable way of doing research.
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A Masking Language Tokens

In Section 4.1.2 we describe the motivation for
using a word-level instead of token-level masking
strategy. Empirically, we find that this improved
performance substantially, as shown in the results
in Table 5.

ACL-ARC ChemProt

Token 0.6501 0.8224
Word 0.7404 0.8394

Table 5: We validate our hypothesis that masking tokens
using DIFFERENCE-MASKING at the word-level is more
effective than masking at the token-level.

B Masking Video Tokens

Following the intuition from language, we hypoth-
esize that masking and predicting small patches
of an image may be testing local capabilities (e.g.
determining what an eye looks like from the rest
of the face) rather than global capabilities (e.g. de-
termining what a person’s face looks like from the
rest of the scene, including other people’s faces).

Accordingly, instead of masking low-level image
patches, we mask groups of patches corresponding
to a higher level semantic entity: bounding boxes
over objects in the image. We see this approach
as a visual analogue for masking at the word-level
instead of the token-level in our language exper-
iments. We found that K = 1 performed much
better than other values, where the selected seed
word was “person”. We considered two possible
bounding boxes associated with people: bounding
boxes over faces and bodies. We evaluated both
options and found that considering entire bounding
boxes over people’s bodies (including their faces)
performed the best. These results are shown in
Table 6.

Masking Strategy TVQA SiQ

Random Masking 73.75 69.05
DIFFERENCE-MASKING (Face) 81.51 69.13
DIFFERENCE-MASKING (Body) 81.73 71.37

Table 6: Results of DIFFERENCE-MASKING on mul-
timodal video understanding benchmarks TVQA and
Social IQ. DIFFERENCE-MASKING leads to an improve-
ment of 8% and 2% accuracy; metrics are 5- and 4-class
accuracy, respectively.

We extracted body detection coordinates using
UniTrack (Wang et al., 2021) and face detection
coordinates using MTCNN (Zhang et al., 2016a).

C Performance by Varying Number of
Seed Words

We conducted an analysis on the effective num-
ber of seed words for calculating similarity and
observed the impact on performance for two tasks.
The results, as shown in Figure 6, indicate that us-
ing 20 seed words yields the optimal performance
for both tasks.
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Figure 6: Number of seed words vs performance on
DIFFERENCE-MASKING. We get the best performance
for both tasks using 20 seed words.

D Detailed Experimental Setup

In this section, we provide an overview of the exper-
imental conditions utilized in our study. To ensure
fair comparisons with our baselines, we maintain
a consistent set of hyperparameters for both con-
tinuous pretraining and fine-tuning. For language
tasks, we largely adhere to the hyperparameters em-
ployed in (Gururangan et al., 2020). Throughout
our experiments, we maintain a masking ratio of
25% in both language and multimodal settings. We
adopt a static masking strategy, replacing masked
tokens with random values.

CPT FTHyperparameters Language Multimodal Language Multimodal
learning_rate 0.0001 0.000005 1.00E-06 5.00E-06
num_train_epochs 150 20 10 20
eval_every_n_epochs 30 1 1 1
patience 20 5 3 5

Table 7: List of hyperparameters used in both continu-
ous pretraining (CPT) and finetuning (FT).
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